8.14: Rules for Reflections (2024)

  1. Last updated
  2. Save as PDF
  • Page ID
    6108
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}}}\) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    Identify and state rules describing reflections using notation

    The figure below shows a pattern of two fish. Write the mapping rule for the reflection of Image \(A\) to Image \(B\).

    8.14: Rules for Reflections (1)

    In geometry, a transformation is an operation that moves, flips, or changes a shape to create a new shape. A reflection is an example of a transformation that takes a shape (called the preimage) and flips it across a line (called the line of reflection) to create a new shape (called the image). By examining the coordinates of the reflected image, you can determine the line of reflection. The most common lines of reflection are the \(x\)-axis, the \(y\)-axis, or the lines \(y=x\) or\(y=−x\).

    8.14: Rules for Reflections (2)

    The preimage above has been reflected across the \(y\)-axis. This means, all of the x-coordinates have been multiplied by -1. You can describe the reflection in words, or with the following notation:

    \(r_{y-axis} (x,y)\rightarrow (−x,y)\)

    Notice that the notation tells you exactly how each \((x,y)\) point changes as a result of the transformation.

    Let's find the image of the point \((3, 2)\) that has undergone a reflection across the following lines:

    1. The \(x\)-axis,

    Reflection across the \(x\)-axis: \(r_{x-axis} (3,2)\rightarrow (3,−2)\)

    1. The \(y\)-axis

    Reflection across the \(y\)-axis: \(r_{y-axis} (3,2)\rightarrow (3,−2)\)

    1. The line \(y=x\)

    Reflection across the line \(y=x\): \(r_{y=x} (3,2)\rightarrow (2,3)\)

    1. The line\(y=−x\).

    Reflection across the line\(y=−x\): \(r_{y=−x} (3,2)\rightarrow (−2,−3)\)

    8.14: Rules for Reflections (3)

    Now, let's reflect Image \(A\) in the diagram below across the following lines and write the notation for each reflection:

    8.14: Rules for Reflections (4)
    1. Across the \(y\)-axis and label it \(B\).

    Reflection across the \(y\)-axis: \(r_{y-axis} A\rightarrow B=r_{y-axis} (x,y)\rightarrow (−x,y)\)

    1. Across the \(x\)-axis and label it \(O\).

    Reflection across the \(x\)-axis: \(r_{x-axis} A\rightarrow O=r_{x-axis} (x,y)\rightarrow (x,−y)\)

    1. Across the line\(y=−x\) and label it \(Z\).

    Reflection across the\(y=−x\): \(r_{y=−x} A\rightarrow Z=r_{y=−x} (x,y)\rightarrow (−y,−x) \)

    8.14: Rules for Reflections (5)

    Finally, let's write the notation that represents the reflection of the preimage to the image in the diagram below:

    8.14: Rules for Reflections (6)

    This is a reflection across the line\(y=−x\). The notation is \(r_{y=−x} (x,y)\rightarrow (−y,−x)\).

    Example \(\PageIndex{1}\)

    Earlier, you were given a problem about the figure below that shows a pattern of two fish. Write the mapping rule for the reflection of Image A\) to Image B\).

    8.14: Rules for Reflections (7)

    Solution

    To answer this question, look at the coordinate points for Image A and Image B.

    Image A \(A(−11.8,5)\) \(B(−11.8,2)\) \(C(−7.8,5)\) \(D(−4.9,2)\) \(E(−8.7,0.5)\) \(F(−10.4,3.1)\)
    Image B \(A′(−11.8,−5)\) \(B′(−11.8,−2)\) \(C′(−7.8,−5)\) \(D′(−4.9,−2)\) \(E′(−8.7,−0.5)\) \(F′(−10.4,−3.1)\)

    Notice that all of the \(y-coordinates have changed sign. Therefore Image A has reflected across the \(x\)-axis. To write a rule for this reflection you would write: \(r_{x-axis} (x,y)\rightarrow (x,−y)\).

    Example \(\PageIndex{2}\)

    Thomas describes a reflection as point \(J moving from \(J(−2,6)\) to \(J′(−2,−6)\). Write the notation to describe this reflection for Thomas.

    \(J:(−2,6)\qquad J′:(−2,−6)\)

    Solution

    Since the y-coordinate is multiplied by -1 and the \(x-coordinate remains the same, this is a reflection in the \(x\)-axis. The notation is: \(r_{x-axis} J\rightarrow J′=r_{x-axis} (−2,6)\rightarrow (−2,6)\)

    Example \(\PageIndex{3}\)

    Write the notation that represents the reflection of the yellow diamond to the reflected green diamond in the diagram below.

    8.14: Rules for Reflections (8)

    Solution

    In order to write the notation to describe the reflection, choose one point on the preimage (the yellow diamond) and then the reflected point on the green diamond to see how the point has moved. Notice that point \(E\) is shown in the diagram:

    \(E(−1,3)\rightarrow E′(3,−1)\)

    Since both \(x\)- and \(y\)-coordinates are reversed numbers, the reflection is in the line \(y=x\). The notation for this reflection would be: \(r_{y=x} (x,y)\rightarrow (y,x)\).

    Example \(\PageIndex{4}\)

    Karen was playing around with a drawing program on her computer. She created the following diagrams and then wanted to determine the transformations. Write the notation rule that represents the transformation of the purple and blue diagram to the orange and blue diagram.

    8.14: Rules for Reflections (9)

    Solution

    In order to write the notation to describe the transformation, choose one point on the preimage (purple and blue diagram) and then the transformed point on the orange and blue diagram to see how the point has moved. Notice that point A is shown in the diagram:

    \(C(7,0)\rightarrow C′(−7,0)\)

    Since both x-coordinates only are multiplied by -1, the transformation is a reflection is in \(y\)-axis. The notation for this reflection would be: \(r_{y-axis} (x,y)\rightarrow (−x,y)\).

    8.14: Rules for Reflections (10)

    Review

    Write the notation to describe the movement of the points in each of the reflections below.

    1. \(S(1,5)\rightarrow S′(−1,5)\)
    2. \(W(−5,−1)\rightarrow W′(5,−1)\)
    3. \(Q(2,−5)\rightarrow Q′(2,5)\)
    4. \(M(4,3)\rightarrow M′(−3,−4)\)
    5. \(B(−4,−2)\rightarrow B′(−2,−4)\)
    6. \(A(3,5)\rightarrow A′(−3,5)\)
    7. \(C(1,2)\rightarrow C′(2,1)\)
    8. \(D(2,−5)\rightarrow D′(5,−2)\)
    9. \(E(3,1)\rightarrow E′(−3,1)\)
    10. \(F(−4,2)\rightarrow F′(−4,−2)\)
    11. \(G(1,3)\rightarrow G′(1,−3)\)

    Write the notation that represents the reflection of the preimage image for each diagram below.

    1. 8.14: Rules for Reflections (11)
    2. 8.14: Rules for Reflections (12)
    3. 8.14: Rules for Reflections (13)
    4. 8.14: Rules for Reflections (14)

    Review (Answers)

    To see the Review answers, open this PDF file and look for section 10.6.

    Additional Resources

    Interactive Element

    Practice: Rules for Reflections

    8.14: Rules for Reflections (2024)
    Top Articles
    Latest Posts
    Article information

    Author: Edwin Metz

    Last Updated:

    Views: 5936

    Rating: 4.8 / 5 (78 voted)

    Reviews: 85% of readers found this page helpful

    Author information

    Name: Edwin Metz

    Birthday: 1997-04-16

    Address: 51593 Leanne Light, Kuphalmouth, DE 50012-5183

    Phone: +639107620957

    Job: Corporate Banking Technician

    Hobby: Reading, scrapbook, role-playing games, Fishing, Fishing, Scuba diving, Beekeeping

    Introduction: My name is Edwin Metz, I am a fair, energetic, helpful, brave, outstanding, nice, helpful person who loves writing and wants to share my knowledge and understanding with you.